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A NEW LOOK AT MULTIPLE SCATTERING

1. The Standard Problem of Multiple Scattering

¥We shall define the standard problem of multiple scattering by
the following set of assumptions, formulated in the cgpyentional
language of astrophysics, For a more complete formulation and
comments we refer to the list of definitions in section 2.

- Homogeneoué plane-parallel atmosphere or slab.

- Optical thickness b; optical depth T runs from O t6 b.

- Albedo a independent of T .

- Phase function or scattering diagram 9)(0() of individual
particles or volume elements (possibly to include
polarization specifications) is independent'of T

- Incident radiation having an arbitrary intensity
distribution with angle impinges on one side of the
atmosphere; we call this side top, the other side
bottom.

~ No interdependence of the processes at different
wavelengths. |

- No internal emission.

- No reflecting bottom surface.

- Steady state (independence of tine) and plane waves

(independence of coordinates x, y, along the slab).

=)



It is asked to determine the intensity and state of polarization of
light emerging under any angle at top (reflected) and at bottom
(transmitted). |

The word "standard problem" has been occasionally used in this
gense but does not belong to the common jargon of astrophysics.
It is employed here for convenience and should not be held to imply
that the many variations from this problem are somehow less valid.
Some such variations are: time-dependent problems; inhomogeneous
oxr curved atmospheres} radiative transfer préblems (in which the
events at different X are ihterlocked by the occurrence of the
same temperature-distribution).

This entire paper deals with the standara problem. In fact,

most of it deals with an even simpler problem, the standard problem

or isotropic scattering, defined by the additional assumption that

@) = 1.

The solution of this problem is well known and its application
_should present no probleﬁs. vet, the numerical results required in
practical problems are gtill somewhat hard to find. One reason is
that most work on the subject contains such lengthy derivations that
the “user" has trouble in finding his way. Another reason is that
numerical values for the basic functions xgﬂ.) and'Y(/L) and their

moments are available in a very limited number. -Even when these are
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 known, the further substitutions still pose nasty problems. Por

example, in transmission when M =/“o . the usual formula gives

0/0, and a differentiation of.XSp,) and‘Ysu ) with respect to/u

is required to find the answer.

The novelty of the present paper is that the relevant equations

are written in a new, extremely condensed, manner.

This adds nothing

of substance but it was felt thatrthe following advantages might

‘results

(é) More results to a page and quicker reference.

(b) Suitable starting point for machine-programming.

(c) Possibility of following the physical meaning

throughout. This is very important because most

of the functions to be defined and tabulated have

reciprocal physical interpretationa corresponding

to a reversal of the time direétion.

(d) Possibility for derivations which would otherwise

become too lengthy. For instance, the second

derivation of the formulae for the adding method

(section 9) would involve sextuple integrals if

~written fully.

(e) An exercise toward the more elaborate programs

required when the scattering is anisotropic or

when polarization is included.




2. Definitions of Physical Quantities and Some Comments

For readers in doubt about or unacquainted with the astro-
physical usage, but willing to accept definitions in physical rather
than mathematical termé, the following list of definitiona and
comments may serve to definé the problem more clearly. Reference
may also be made to the books of Chandrasekhar (1950), Kourganoff
(1952) and others. Deviations from ccﬁmonly accepted'usage. where

found desirable, have been pointed out specifically.

Radiation or light. These terms are used interchangeably.
They may refer to a small or wide wave length region, provided only
that the scattering properties (extinction coefficient, albedo,
scattering diagram) do not vary with wave length within this region.
The amount of radiation or light may be expressed in energetic or
luminous units as desired.

Scattering. The process whereby part of the radiation or light
arriving at a scéttering particle suffers a change in direction,

possibly combined with a change in state of polarization, without a

change in wavelength. The scattering coefficient Kkgqoa wiil be
defined as total scaftering cross-section per unit volume, or
average cross-section of a particle times number of particles per
unit volume. The dimension is length™t. The quantity more

commonly used in astrophysics is the mass scattering coefficient, or
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t~otal cross-section per unit mass, which is 1/79 times as large,
w.here {O = density = mass per unit volume. Similarly for absorption
\:nd extinction.

Absorption. The process whereby part of the radiation or light

X.rriving at a scattering particle or volume element is absorbed into
Uhis particle or volume element and converted into heat. The
X bsorption coefficient is Kk, . (length'l). The opposite process,
X:mission, generally exists whenever absorption is present but will
‘not be incorporated into our formulae because of one of 'two reasons:
1. In typical light scattering problems the emission can
be ignored because it occurs mostly at quite different
wave lengths in the far infrared.
2. In the “"grey" radiative transfer probiem, when we
consider total energy only, the absorption and subsequent-
emission can be formally combined into one scattering

event with albedo 1.

Extinction. Sum of scattering and absorption. Extinction

~~oefficient = k =k = relative loss of intensity per

ext abs + ksca

'~.nit path length from a rectilinear beam of light. .
Albedo. Symbol a. The ratio of scattering coefficient to

<wytinction coefficient; we have

k = a kext

sca



kabﬂ = (1 - a) kext

The conventional symbol W (curled pi, net omega) for albedo
is avoided because most users find it too exotic.

Optical path length. Integral between any two points A and B

- of geometric path length times local extinction coefficient. No
separate symbol is required because the expression l(zl '.ZB)<7LJ.)
where /u = cosine of angle with normal, suffices.

Optical depth. Optical path length measured perpendicularly

to the slab or'atmosphere from a convenient zerxo point (usuelly

taken to be the top surface).

Homogeneous atmosphere. A plane-parallel atmosphere in which

a and (9 () do not change with 7. A narrower definition would be
to require thaf each of the coefficients kext' ksca' and kabs

are independent of the gecmetrical heightrin the atmosphere, but
these coefficients do not appear anywhere in the theory except in the
final conversion of optical depth into geometrical depth. Hence the
wider definition, which applies pretty well to many practical
problems eqncerning planetary atmospheres, is preferred.

" 8cattering angle. Symbol & . The angle between the direction

of propagation of the light arriving at a particle and the direcction
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of propagation of the light scattered by it.

Scattering function or scattering diagram. Symbol ? ().

The function indicating how the radiation scattered by a single
particle or small volume element is distributed with the scattering

angle. We adopt the normalization

{
1| olx) d{cn ) = 1

=

and define the first moment as the asymmetry factor

1
= L[ pay £osa  d(cos )
g= x| #

In older books ’D(d ) would often be called the phase function
(termm derived from"phases of the moon'; “phases of the planets")
and the argument would often be JT— & . In modern work the texm
forward scattering unambiguously refers_fo X = 6 (or close to 0)
but in older work the words forward and backward were sometimes
used ambiguously.

In order to describe scattering of polarized light fuliy, it
is necessary to consider each intensity as a four-vector of the
four Stokes parameters and the scattering function gv(u') as a

- 4 x 4 matrix. Por explicit formulae we refer to Chandrasekhar's

book.



Multiple scattering. The successive occurrence of scattering
processes by different particles under the assumption that fadiation
or light arriving at a particle after having been scattered by another
one is affectéd in precisely the same manner as radiation'or light
coming from a very distant source would be affected. This means that
typical vicinity effects are excluded, which is permissible ih |
virtually all applications.

ﬁadiative transfer. The successive occurrence of processes by
which not only the direction of the radiation is changed but in which '
also radiative energy is being converted from one wave length t§:i
anothér wave length. This is usually described as a process of
. absorption and subsequeqt ro~emission dependent on a locally
defined temperature which is defermined_by the transfer process.

We do not consider radiative transfer problems in this paper, except
for the equations governing the total energy (integréted over all
wave lengths) in the"gray case" absorption coefficient inaependent
of wave length, which happen to be identical for those govern;ng

fhe intensity in multiple scattering with albedo 1 apd isotropic
scattering diagram .

Intensity. Amount of radiation flowing per unit time per
steradian per unit area perpendicular to the directiop of propaga-

tion. This is the fspecific intensity" cormonly used in astro-
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physics. In the absence of extinction the intensity of radiation
emitted by an extended source equals the brightness of that source.
It is independent 6f distance because the area of a feam increases
in the same proportion as the solid angle diminishes with increasing

_diétance. The words intensity and brightness can be translated

~into appropriate standard terms when the system of units has been

chosen, but the general definitions suffice for the present paper.

Lambert surface. 8Surface (of a solid body or other object)

which has equal brightness in aii directions in the hemisphere

from which it can be seen.

Flux or net flux. Amount of radiation flowing per unit time

through a unit area parallel to the top or bottom surface of the

atmosphere. This definition corresponds with standard usage, but
it should be noted that also by standafd usaée the flux is represented
by the product TF, so that F =- T x flux. The reason for this

convention is that F = 1, flux = T, for a Lambert surface with

intensity 1. In colloquial astrophysica F is often called the

- flux; this is verycmfusing and we shall try to avoid this

colloquialism, If M is the (positive) cosine of the angle

between the direction of propagation and the normal, then

1
Feey=2f poIinp 4
My ] ,

—9—
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Average intensity. Symbol‘iz Intensity averaged over the

total solid angle 277 of a hemisphere without weighting factor.

— 4 |
I =/I(/u)4/u

[~
This concept is useful only for the emergent radiation at top or
" pottom of the slab., Like P it is an average, or moment, of the
remerging intensity distribution, but it gives relatively more
weight to the grazing directions than F.

Source function. Symbol J. Amount of radiation or light
scattered per unit solid angle from a volume element containing
particles with unit total extinction cross-section. This
definition is equivalent to saying that the intenaity of

- gcattered radiation emerging from a box with surface area ac

and optical thickness d¥ normal to d6 is J d6 dt (Pigure 1).

FIGVRE 1
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VJ has the dimension of intensity and is independent of direction
if the particle scattering is isotropic. However, the definition
can be applied also to anisotropic scattering, in which case J
depends not only on the position in the medium but also on
direction. If polarization is taken into account, J is a 4-vector.
For isotropic scattering

1
J(T) = -:-/ 'I(T,/“) 4/4

|

Radiation density. Amount of radiative energy per unit volume.

If energy units are used to express the intensity, the radiation
density involves the same integral as the source function (for
isotropic scattering) but the factor is different. Let c be the

veloéity of light then,
Radiation density = -—If-”—:- J-/Z'.)
C a
The units could be:
I in erg sec™l cm—2 sterad'l, J and radiation density
1l

in erg ™3, ¢ = 3.00 x 1010 cm sec”

or
I inrwatt m~2 sterad™}, J and radiation density in

joule m~3, ¢ = 3.00 x 108 m sec™l.

w]lle



Please note that the integration of/u, over two hemispheres, which
occurs in the definitions of F(¥), J(¥), and the radiation density
cannot be expressed in the condensed matrix notation which we shall

employ in subsequent sections of this paper.

Reflection function. This function R(/y53/4) is more completely
called the diffuse reflection function. It is defined as the intensity
refiected in direction/pt when radiation with flux 7 (P = 1) is
incident from direction /1 Here /{0 and/u are the cosines of
the angles of the direction of incidence and reflection with the
normal, taken with positive sign.

Some comments are necessary. Pirst, if the incident radiation
comes from a small solid angle, say the Sun's disk with 1312-

0.86 x 10~% steradian, then the average specific intensity incident

from directions within this solid angle must be taken as

”- .
Iip = —~*7§j§' in order to obtain incident flux ﬂ‘(Fin = 1,

Mo

see definition above). Hence} the reflected intensity caused by

arbitrary incident intensity confined within that solid angle is

o AL
~[;u4 Afi*;:—*-' L ’Q(O“oya) !

Secondly, this reflection function is related to Chandrasekhar's

function S(/uoyu ) by

-12~



:;<;“ob/t)
/<o /¢

Both functions are symmetric. The reflection formula for = i

R//“"’/‘)"_'

arbitrary incident radiation

4
T 99 = g | SO Tutr) 9

employed by Chandrasekhar (R. T. page 21, Eq. 122 with minor
changes in notation) can be made fully symmetric in two equivalent
ways

. 1
(a) {/AIM(/‘J} = E'j $pop ?,v/"°I""éa°)f %

_ o 41
“_3) I_om‘//‘5 = Z/ R//"o:/‘) | I:'n (fo)  fo //"’
| , 0 .

We have selected form (B) because the intensities themselves
appear and because R(/}u)/u ) assumes finite non-zeéro values for

' /u =0 o; )“o = 0; (but it becomes & for /ao‘ifi - 0)-

Transmission function. The function T(/u.,/u )} is more
completely called the diffuse and direct transmission function.

It is defined as the intensity emerging in direction/k from the

-]3-



bottom of a plane-parallel atmosphere when radiation with flux

X (F = 1) is incident on the top from direction /ub. 39:9‘/10
and/u are again positive cosines of the angles with the normal.
Included in this definition ;s the direct radiation, i.e., the part
of the incident radiation which emerges at the bottom without
scattering. This is convenient, first because the formulae are
simpler that way and,>secondly, because in many experimental

conditions the direct and scattered radiation are indistinguishable.

3. The Milne Equation

Sections 3 to 5 refer only to the case of isotropic scattering

[ CF(O() = 1 ] . We repeat the main notations.

b = total optical depth of layer }
' regarded constant

a = albedo of particles

T_or ‘r’ = optical depth from top surface

/ﬂo = positive cosine of angle of incidence measured

from normal

/4 = positive cosine of angle of emergence at top'or

bottom surface, measured from normal

»top* = side from which incident radiation comes

“hottom" = the other side

-4~
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fﬁe preceding definitions make cle;r that the source function
J¢r) and the intensity I( TVM ) are expressible in terms of each other,
namely '

J in terms of I by an integration over directions (/4)

I in terms of J by an integration over depth (7)
From here we can choose to eliminate J, obtaining one equation,

- the equation of transfer, for I. Alternatively we can choose to

eliﬁinate I, obtaining one equation, the Milnsg equation, for J.
| We choose the secqnd alternative, which is distinctl& siﬁpler
because (only for isotropic scatteiing!) a function of one variable
instead of two is involved. This means that inside the atmosphere
we consider functions of T only and at top and bottom we consider
functionsof/LL only. Incidentally this'relieves us from the
always somewhat clumsy notations to distinguish between intensity
up or down. As it is, we can take‘/A alwayé positive corresponding
to the cosine of the angle with the outward normal, the term
"sutward"® being unambiguous at top or bottom but not at any
intermediate point.

Let the incident radiation have the intenéity Iin(/”a):
independent of the azimuth angle 97. If this assumption is not

ﬁade, one further (trivial) integration over 9 is involved.

=18
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The emergent intensities I, ;¢ (/‘) must then be found from the

following set of equations:

{ | ¢
CEEERG £!'/I;n(/‘«) @-T//‘ad/w 2 E (1z-7)Jee) &

0 [

B o .
-¢/ ~6-7)/
\I"% trensulV= Lin (1) € & / Jiz') & /“,—2 47!

These are fémiliar gquations in an unfamiliar setting, because
of the_assumption of a diffuse incident rédiation field. The
main problem, of cou?se, is solving for J(7°) from the first
integral equation, which is the Milne equation. The kernel

‘contains the exponential integral
' &0
Epn=[ ¢ L
(V) = w
1
The flux can be similarly expressed. ﬁriting the downward

net . flux as T P(T) we obtain

1 _T%‘lo 4 ;
F(zr) = Z/'Z}n//“o)e /‘o‘{/lo + 2/52[7"2-’) ]—/T') 6{2' -

v
2 [ Ey(rT) ) AT,

(3)

=16~



‘where 00
E;[}')"’ / € ‘41
. 1 . “"

As a check we differentiate equation (3) and find

(4) dF( _ y( 1- ¢ J(7)
AT -

Tt is easily verified from the definitions that upon multiplication
by 71 dr we have left and right the amount of radiation absorbed

in a volume element with area 1 and thickness AT at depth T .

4. Matrix Notation

The preceding equations and the various solution methods
which. follow contain iﬁtegrations of only two types:

integration over T or 7/ from 0 to b

Vintegration over 4t oOr /“o from O to 1
We now introduce a condensed notation in which these integrations
appear as matrix products. A function of 6ne variable will be called
a p =vector or a T -vector. A function of two variables will be
called é /6y -matrix, a /A?'-matrik, a ?}u -matrix or a TT -matrix.
“The ofder has to be stricﬁly observed. Multiplication of two matrices

or a matrix and a vector, or two vectors is a short notation for

=17



integration over the adjoining arguments, which should be both T

or both/u. . We adopt the definitions:

é
T -multiplication F G '-"'/ F(z) f(v) dT
: o
r .1 f / /
M -multiplication F G = F//‘J 4&4) 2/“ ‘5"
0
where F(T), G(T ), F'gy.), G'(/A) are arbitrary functions.

These multiplications cbey all rules of matrix multiplication,
in particular the associative property. The factor 2f‘ in the
definition of the 4 -multiplication is necessary in order to make
the matrices symmetric (compare the remarks made on R(/uovy ) in
section 2). Not a single transformation or approximation is made
at this stage. We go on working with éontinuous variables and
have changed only the notation. Evidently, actual matrices with
a finite set of numbers may be employed in machine éomputations,
but we are not yet concerned‘with the technique for doing so or
"with the accuracy lost in that procéss.

The curious fact about this notation is that it seems too
economic, for the notation does not tell whether a %unction of/kx

or Mo is meant or whether the argument is 7 or z/ . This will

always be clear from the context, i.e., from the_phjsical meaning
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of the expression. Nor do the /gft and TT'fmatrices specify in
what orde: the arguments are to taken, for instance,.in the order
( /u:/lo) or (/go)/u ). This will always be irrelevant because
of symmetry. These curious properties are manifestations of the
reciprocity principle, which generally expresses the possibility of
inverting the time order of events. Several consequences arxe
mentioned explicitly in further sections.

A formal distinction betweén the two matrices representing

the function

e_z‘éu. P {/aT-t«v/rixj

M P (Tu - mafrix)
is necessary in this notation but ceases to be visible when the
integrations are written out. P is the transposed matrix of P.
Similarly..a is the transposed matrix of Q. All square matrices
(TT orlfvu -~matrices) whichroccur in our formulae.are symmetric,
i.e., their own transpose.
Here follows the list of the vectors and matrices which we

shall use.

Symbol Function
//k -vectors I Iin( Ko) = incident intensity
o Iout‘/l) = emergent intensity



Symbol nction
Symbol Function

-vector-s D (2/ )'1 x angular detector response
(contd)
U 1
gz
z operator defined by 2P = &(0),
& arbitrary |
T -vectors J J(T) = total source function
S aJd, (T) = first order source function
Jp Jp('t') = p~th order source function
fora=1l(p=1, 2, 3, ...)
W 1
A opérator defined by A& = &(0),
$ arbitrary
B operator defined by B& = 3(é) ,.
& arbitrary
E E,(T)
G 2Ex(T)

/u/( -matrices 1 5—'/; I{/"’/‘o)) diagonal matrix,

operator converting only the

argument /uo into @ , or conversely.



“ /U/i -matrices To 2/u

Smbol Function

¢/, |
Le - (r(/:/n,))diagonal matrix,

(contd)
operator converting a function of

Mo into the same function of/* '
' -4/
multiplied by e a

R reflection function R [pe,p)

T transmission function T (/o ,/‘L)

§(, T’)) diagonal matrix, operator

T U -matrices 1
converting only the argument v/ into
;T_’, or convers'ely
M %E{(-‘.T-- T") = Milne operator.
This operator is commonly known as
the /\‘operator.
C (1 - a.M)"l = the complete redistri-

bution function

I/“ -matrices, Symbol

;_cr -matrices, Symbol Function
~T/ —
P L e e P
" /
-(£-7) -
, Q Loe 7 Q
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Several singular functions occur in this'tabulation. They
are all common delta-functions and obviously indispensable in this
type of calculus. Their meaning may be described in two ways.

(a) As an operator, i.e., by stating that matrix

mﬁltiplication with this function is an order to

replace one variable by another variable, or by a

specific number, as specified.

(b) As a continuous function which has large non-zero

values only in a very narrow range of values of the

independent variable and which, upon integration by

the general definition of matrix multiplication,

yields the specified result in the limit in which

'this interval shrinks to O.

The definition (b) is a little more cumbersome but corresponds
to actual situations, €.g.. illumination by the Sun, thch is not |
a point source, or observation by means of a telescope with

~ddimited resolving power directed at the limb of a planet's disk.
In these situations the angular integration interval is small
_but not strictly zero.

Several relations between these singular matrices may be

noted. They are trivial, mathematically, but a loose description

.« -+ of their physical meaning may have some interest.

-22-



First, - .
PZ = ZP = A

%z =20 =B

Verification proceeds by multiplying with an érﬁitrary T -vector

vvs and writing the integrals out, for instance, ZPS = Z(PS) =

S(d) = AS. The descriptive value of these relétions is: "light

incident under a grazing angle penetrates (without scattering)

only into the topmost layers'of the atmosphere"”, or reciprocally,

_ “yiewing an atmosphere under grazing angles we observe only the

tormost layers.® The interpretation of the second relation is

quite similar.
Secondly, _ : -

2AM = 2MA = NP = PN = E (T)

2BM = 2MB = NQ = QN = E, (b = T )

The verification is straightforward. The descriptive meaning of

the top relation is that radiation from a narrow layer of

isotropic Qources on top of the atmosphere(N)is first scattered

(5) in'different layers distributed as the Milne distribution function
(M), measured from the top down (A). Reciprocally, a radiation
detector with isotropic sensitivity characteristic (N) held at

the top of the atmosphere will record the radiation from various

=23~
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layers (P) weighted according to the Milne distribution function
(M), measured from the top down (A). The interpretation 6f the

bottom relation is entirely similar.

Thirdly, some related products are
2WMA = 2WMB = 2AMW = 2BMW = 1 - E, (b)
2AMB = 2BMA = Ei(b)

2UM = 2MU = 2 - B, (T) - E3 (b ~-7T)

2AMA and 2BMB diverge )

5. Internal Relations

It is possible to avoid in an elegant manner any detailed

discussion of what happens to the radiation inside the layer and

to concentrate on the equations governing the external radiation
field (external relations, see 6). Although this method has been
brought to prominence by Chandrasekhar, we feel that logical |
priority should be given to a'method in which we follow "what
happens to the radiation” when it gets inside and how it gets
out again. This we shall do in the present section. Of coufse,
none of this is new. Only the presentation may be more concise‘
and, we hope, more transparent than in most textbooks.

The following derivation will be confined to isotropic

24—



scattering, (xy = 1.
The events in a logical order, are:

gjfst Event: The radiation incident from the top, I, which has

an arbitrarily given intensity distribution with angle,
penetrates into the layer and is scattered at various
depths, thus establishing the original (first-order)
source function ‘ |
s= & Pr
7

The factor % appears when the integral is written down fully
employing the Gefinitions given in Section 2. Essentially
it is due to the fact that the flux has a factor mw but

that scattering occurs into 4 m steradians.

Second Event: The radiation forthcoming frem the source

distribution S is scatterasd again and again, thus
establishing a complete source function, which includes
S and all higher orders and is written as

J = CS8

Third Event: Radiation from this source function at various
depths reaches the top surface under various angles and gets
out, .giving the emerging intensity

- Otop = PJ

-25=



Similarly, the radiation from these sources emerging at
the bottom is QJ but in addition, some of the original
incident rgdiation shines through without any scattering,
giving at the bottom the intensity TgI. The combined

emerging radiation intensity is
Opottom = Tol + @J

The same equations, written fully with integrals, were given
as Equations 2 in Section 3. ’

Fourth Event: If a detector is_used to measure the emerging

radiation (at top or bottom) sampling the different angles
with a certain weighting factor described by D, the
~detector reading is a number
a =D0
The combined resulﬁ of these successive matrix multiplications
thus assumes the form of a reflection function R and a transmission

function T operating on I.

Otop = RI = PCkaPI

Opottom = TI = Tol + QChaPl

So that we have the equations

-26~



R = PCkaP

T=T,+ Qckaf'.

which may be taken as the definitions-of R and T in mathematical
terms. Granting the symmetry of C (see below) it is readily séen
that both é and T are symmetric matrices.

The corresponding detector readings can be written as

d = DRI = DP CkaPI

top

In these equations D occupies a position symmetric to I
and DP (or DQ) a position symmetric to PI. These formulae may,
therefore, be turned around and may be given a different
(reéiproéal) interpretation in which I refers to the detector
charactéristic, D to the incident intensity distribution.
Particular choices for D and I and their reciprocal interpretations
will be discuésed in the next gection. The advantages of the
matrix notation are that these symmetries appear quite naturally
and that the choice of the order of computation may obviously be'
decided on the basis of convenience only. For instance, dtop
may be computed from
= D(PC¥aP)I = DRI

dtop
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~or from

deop = (PP) ¢ (5aPI)

~whi§hever seems more convenient in é particular application.

The determination of ¢ forms the core of the multiple
scattering problem. This subject is important enough to describe
two separate ways of deriving the equations.

First, if we refuse to recggnize any hierarchy of first.
secbnd'and higher-order scattering, we must reason as follows.

The local intensity at'any depth T énd hence the local source
function J comes partly from incident radiation which has penetrated
to that depth (this part we have called S) and partly from radiation
scattered by the atmosphere, which ijtself depends on J at all other
depths . This is éxpressed by the matrix equation (fully

written as Equation 1 in Section 3)
J =85+ aMJ

Consequently,
s = (1 - aM)J
 and

J=¢CS.,. c= (1~ aM)"1

In the second derivation we consider that radiation from
outside gives S, the first-order part of the source function.

Tha !
Ak S
2

-28-



!
!
1

One Subsgquent scattering gives second-order sources distributed
ag aMS. The third order requires again multiplication by aM.
‘Henée the total sum is - |

g =25 +aMs + a2M?s + ... = CS
where

c=1+aM +aM2 + ... = (1 - am)~t
Both derivations are fully equivalent. The second one suggests
at once a method for numerical computation of C, more details
about which are given in Sectioh 8. fhis is'by po means the only
one possibie.

It may be noted that zero-order sources, i.e., isotropically

emitting sources of radiation embedded within the atmosphere with
an arbitrary distribution SO(T‘) can be easily incorporated. The

only change is that § should be replaced by § + 55 -

6. External Relations

External relations are those in which no functions of T
occur. Sseveral authors, most completely Chandraéekhar, have
shown tha£ these external relations can be derived by means of
“invariance principles withoﬁt‘ever going through the'calculatibn

of the internal intensity or source function. This can be done

S o -20-
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for an arbitrary scattering diagram of the single particles. The
external relations then involve /u; ,)px and the azimuth angles
§, and $Y . The relations are simplest for isotropic scattering,
* in which case only Mo and//4 are involved and the results can be
expressed in terms of two functionc X(/;) and Y(/4) and their moments.

However, before we come to these results, we wish to summarize
the more general relations which can be written down without
specifying the preéise form of the deflection and transmission
function of R and T. Any measurement of the emerging radiation
at the illuminated side of the slab (top), or at the other side
(bottom), has the formrof a "detector reading"

d = DRI (top)

or

d = DTI (bottom)

Thesé expressions are the product of a/u -vector, a /6u -matrix
and a M-vector and thus form external relations. If we avoid
specifying the form of R, these relations have a far more general
applicability than those in which R and T are specified by the
formulae derived in the preceding section. For instance, they may
refer to an inhomogenéous slab in which the albedo depends on
depth. They hold similarly if the scattering diagram is

anisotropic, perhaps even varying with depth, and the incident
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radiation (and hence als§ the emergent radiation) is independent

of azimuth. Obvious extensions to include the azimuth dependence -
might be made but we shall not do this. Hence we work with the
reflection and transmission functions R = R g*l,/uo ) and T = T(/fg/uo)
and for the moment it suffices that we postulate their symmetry

on the basis of the reciprocity principle.

We may choose for I either an operétor stating that we have
to take a particular value of/a° . which corresponds to a plane
wave incident under one angle. Or, we may choose for I a function
representing the incidence of light from a range of different
directions. Similarly, we may choose to specify D in such a manner
that we measure radiation emerging under a specific angle (the
?osine of which is/u ) or we may. take it'to be a non~singular
function so that we measure an integral 6f the emergent light with
a well-defined weighting function for the angles. We have avoided
the introduction of separate symbols for the vector-operators
specifying a parﬁicular angle ( /“o or/u )., for they do not
involve a separate step in the computdtion, once the function to
which they are applied has been tabulated. Only the specification
that /40 or'/u is 0 (grazing angles) has been introduced as the -
vector 2.

Functions I and D specifying integrals can, of course, be
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: chosen in infinite variety. For mathematical and physical reasons

we choose two simple ones, N and U to be applied'as a matter of
routine in ali tabulations alongside_the values of the functions
R #nd T for chosen values of /ua ahd/u . This is thoughtvto be
an imprerment in convénienCe with respect to older papers where
these integrals, if given at all, often are at quite different
places from the function values.

The following integrals over the emergent radiation 0 are

obtained: ‘ |
NO = / 0(/4 )d/u = average intensity
°
’ 8
vo = / o(/u)z/u d/4 = emerging flux /7T

(4]

Multiplication by N énd U thus defines the zero ahd first moment,
normalized in such a manner that an equaL—intensity distribution
0O =1 gives NO = 1 and UO = l; They can also be regarded as
differently wieghted averages of O in the domain,‘/A =0 to 1,
on which O is defined. The physical meaning of NO is c/2m
times the radiation density of ﬁhe emerging radiation, as
defined in Section 2. |

" In the reciprocai fbrmulée N or U specify the distribution of

incident radiation I and the physical interpretation is different.
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I =NE 1/‘%/A) means that the radiation intensity increases as
14u towards the grazing angles. This is the intensity éistribution
that wou}d be forthcoming from a narrow layer of isotropically
emitting sources, The incident flux is 7 . The formula“
I =U=] means that the radiation is independent of direction;
This occurs, e.g,, in the emission by a black body, or in the
_light diffusely reflected from an ideal white surface; thé classical
term for this distribution is Lambert's law. The incident flux
is again T .

In Tables 1 to 4 we summarize the various combinations to
which these choiées for D and 1 iead. The values or functional
forms for the simple producfs are written in'the tables. Those
for the products involving R and T will be specified presently.
The values for the directly transmitted light change into those

for the direct light as b —> 0.
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Tables 1 and 2.

an»aann (flux down)
Values of DI

Radiation Field at To

Di ffusely raflected (flux up)
Values of DRI

incident incident | incidant roflected reflected | xreflected
intensity averzge flux /1 intenaity averaga flux /1T
any direction| intensity any dirsction| intenszity
incidence from /
identit N =— U=l
one direction Abnh o lk\o - R R UR
incidence from N = A NN = 00 ON = 1 RrA NRE ony
narrxow source layer| &}. -
incidence fxrom ’
U= 1l 1 = 1
Lambert surface NU = uu b MRy URY

R U URNE S



Tables 3 and 4.

Radiation Field at Bottom

Directly transmitted

vValues of DT, X

ewmbma»nmnm.
including direct part
values of DTI

directly dirsactly directly transmitted | transmitted | transmitted

transnitted tran=mitted | transmitted intensity average flux

intensity average flux any intensity

any direction|{ intensity direction

~Cipe ¢

incidence from - NT, 4 U7, = e \\.o - -
cne direction ° Mo
incid £ e
ncidence from ) )

T N =< = UTK
narrow source layer oM ~ N\k Ko lhm.‘ \m\ UL N B (b) ™

-4/

incidence from /a :

T U e = = TO uTu
Lambert surface o” NTU=Ep (b) [UT,U =2E 3(P) .
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ﬁe now return to the consideration of homogeneous atmospherés
with isotropic scattering, in which the albedo a and the optical
thickness b are the only parameters appearing in the external
relations beside the cosines So and//A . Under this assumption
the familiar way of expréssing both R and T.and their various
integrals listed in Tables 1 to 4 is by means of two functions

X(p) and ¥(u) and the‘ir moments |
Xy = /o X(/*)/PJ/A P:o,l')...
P~ /4 Yppplgp prhabe
o
For a definition of these functions we may use
NR=RNV= 3/': -{ X[/A) - 1}

NT = TN = %j: \16“)

For detailed derivations we refer to the literature. It may

be shown that

~36~



!

X )X ) = ¥ (u ¥ )
l///u-/uo\{ #/ r f

a

4’//‘0‘/‘)

{x(/«)v(/‘,-) -Y(#)x(/o)} + T,

UR=RU = F/lu)= {"'-(1—‘;‘%\)({/0—-%,&‘(&)

| - é'do \?/ )
ur =Ty = tlp) = gﬁoxoﬂ)*’(’ 2 ) Tr

URN = NRU = - &, = L

UTN = NTU = ,6’0

URU = rg = 1 = 2, +a (0 -—/9,,/3,)
UTU=tc=2161 + a (,5)00’1 ““aﬂ:)
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m=£ E;T{X{m-_f}dﬂ -

This integral is the non-divergent part of 150(__“

NTN = 5 P_,

Finally, the fractions of the incident flux which are absorbed
inside the atmosphere follow by subtracting from 1 the gum of
‘the fluxes emerging at top and bottom. The results are given in

Table 5.

Table 5. Absorbed Praqtio;i of Incident Flux

incident from absorbed fraction of incident flux

one direction U=UR - UTrs= (1 ;%Ro- glﬂo)‘; X(/‘OB- Y{/“O)g

narrow source layer l - URN -« U'N = 2 =~ o(o - {30

Lambert surface l =URU -~ UTU = (2 = 4“0"4150)( "() -/51)

For comparison, it may be noted that the result for a narrow source

layer may also be written in the form

(= 3% - 28 %-f).

which is equal to the expression given in virtue of the identity
2 ° 2" .

-38-



chandrasekhar has chosen these non-linear equations as the
defining equations of X(/A) and Y(/u ). This choice was somewhat
unfortunate, because the existence of a unique solution (for a 3&1)
is not obvious, although numerically the equations can be used in
an efficient iteration method. A number of éapers have heen devoted
to this uniqueness problem and it can be considered solved now
(seeBu&xidge's book). In the conservativé case a = 1 the solutions
become undetermined.

These problems are avoided if we use consistently the definitions
of x(/4) and Y(/A) in terms of NR-and NT. These definitions corres-
pond to very simple physical definitions as follows (van de Hulst
1947) s

Place a narrow source layer in front of a plane-

parallel atmosphere. Thé-radiation seen in direction

/A is thereby multiplied by a factor ngt).

Place a narrow source layer behind a plane-parallel
atmosphere. The radiation seen in direction/u is

thereby multiplied by a factor Y(/a).

gubstituting for R and T the expressions from section 5 we |
obtain the definitions of X(/L) and‘ng.) in terms of known

matrices:
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X(pM) =1 +9-/unpci>'= 1 + SHPCPN
-d//*

Y(/A) = € //‘ +—/u NQCP= e+—}LQCPN
which leave no worries about existence or uniqueness, once it has
been establxshed that the matrix C = 1 - aM)"l exists. The
‘conservative caseé is in no way exceptional in th1s formulation
(except for b = & . where a = 1 is at the same time the critical
value and some caution may be required).

Chandrasekhar happened to choose among the various solutions
of the non-linear equations for X(/A) and Y(/‘) in the conservative
case a“standard® set which does not correspond to tha.linear,
definition given above, or any of its equivalent forms. The following
relations, derived by-Chandrasekhar, may be used to obtain the correct

functions from the standard set.
x/,u\ = K lpd ¥ ] p {Xu//‘) + Yw/”f
Y= Vel = &g Y Xatpy + T (4

functions:

| ¢ gt
<p = % *Q("‘w* Sper )

IBP = Igr - Q /M}:H +/g;(;l_)

moments:

The function Q = Q(t) was defined and tabulated by Chandrasekhar.
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7. Low Order Scattering

The expansion of C in the form
2
C=1+aM + a2M + a3M3 + e

makes it possible to expand any quantity F in which this linear

' operator is a factor in a power series in a of the form
F(a) = F_ + aF, + a’F, + a’r, +
lo) l 2 3 > e

We shall call apr the term corresponding to p—-th order scatter-
ing. 1In this manner terms ot different order may be distinguished in
intensity, flux, sourxce function, or radiation density. The co-

efficients of the power series expansion for the. source function J

in the standard problem are

Jg ® O (assumed absence of embedded light sources)

(p>1)

The total source function accordingly is
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- ao
J= Z(am) S = CS

p.l pal

. The correspondlng emergent x:adxatlon of order pp1l is specified

by Table 6.
Table 6 .
emerging radiation of order pl reflected transmitted
I3 13 t .t o e - »
intensity /u * o % PJP QJp
ssmt it = Z0 AJ 0 BJ =J
ensi y M=o | o p-Jp( ) P p(")
-@mwverage intensity NOP ZAJp+1 = 2Jp+l(0) 2BJp+l = Jp"_1 (6)
é ' 4
£lux/ vo GJ =(2E_(T)3_(¥)4T 2E_({-T)J3_(v)ev
/ v, p/Z()p() /2< )3, (%)
, A A

It has decided advantage (in connection with numerical checks and
th the discussion of optically thin atmospheres) to know the results
for several orders separately. Only those fot the first order and some

__for the second order can be expressed in terms of the exponential

-dntegrals,
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o-Xt
Ep (x) = " dt 5
1

the"second order" exponential integrals

2) ©
5 ) = /El(t) 2t
X

and related functions. We summarize the results which have been de-

rived elsewhere (Van de Hulst 1947, Kourganoff 1953).

Zero Order. Does not occur in reflection. For transmission,

see Table 3 (page 35).

First order. The following conbinations occur (Table 7), with
top values (reflection) and bottom values (transmission) written

togzther in each box.

Table 7
I s _ 3 *l;I emerging emerging emerging
a 1 4‘ intensity ?ﬁggﬁuftv flux/r
Incidence from AP il Ry NRy URy
dlrectlon/uo 4 4/-‘0 Tl NTl UTl
Incidence from 1 E_lal(r) R,N NR,N UR,N
Narrow source 4 4 TN NT; N - uT\N
layer
Incidence from 1 g=l E,(7) R,V NR,U UR VU
Lambert surface| 4 2 T, U NT. U UT, U




The complete results are collected in Table 8. The reciprocal express-=

- sions (e.g. NRl instead of RlN) can be obtained by simply replacing/u

by /49 and conversely.

Table 8. Analytic Pxpressions for First-order Scattering.
for/( 740 for/.(—c)
1T ‘/(‘/* *po) 11 - 27 G5+ /‘O)S. | q/"—‘-o '
Y = { e Y _ o= KIRELL
dxagona{valz)es/a-:ﬂo; ' Y+ YMo
K = 7 { | - : - /“ir 00
T, = ._4-3_ e” a 0
i ypu ,
R B —?
T ARAFRI | ke, (6
Mot RERE .
n o= Lo R(Gd) | 4E, (6)
-NR1N= z'/-G,,/é’) NT N = 7;—6—,;/()
NV = & b,, (4 NT.U = & G, (¢)
wV = Gy, (4) 0 N U AN (£)
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The equation for R1 is the famous Lommel-séeliger formula, often
employed in astrophysics about the turn of the century. The other
fqrmulae are given in the notation of Van de Hulst (1947), although
the F-fhnctiéns had been studied as.early as 1913 by King. The
notations of Chandrasekhar and Kgurganoff are'idenfical, except for
" the arguments of the F-functions, which they write (‘QVA ) instead

of (/-l‘- , T ). The defining equations are

¢
Fn(s,é) - " E, (t) dr
‘o0
_Gnmtg) = (o") =/ E, (r) E, (rydr
Ghm“‘)_’ = (J)-—/ E,.(v) E (6-T) dT

For tables, special values, and further properties we refer <o the

literature.

Second order. Second order scattering generally involves even

more complicated functions. "It would not pay to write complete

formulae.
Van de Hulst (1947) and Chandrasekhar (1950) have discussed

“ ' v . -
formulae which may serve to calculate some further quantities connected
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with the second-order scattering in an appréximate fashion. In view
of the availability of numerical tables now being constructed there
is no need to repeat these approximate equations.

The  second-order values of a product containing the factor 2
(grazing incidence or grazing reflection) can be obtained from the
first-order values of the corresponding product containing the factor

| N (see next section).

8. Grazing Angles

It is obvious that several of the results which we have derived

must be considerably simplified if we specify

grazing incidence, /“o =0, I-= z
or o

grazing emergence, /M =0, D=2

We shall now see what simplifications result in this manner. The
resulting formulae are useful in various ways.'and it seemed useful to

have them collected in this separate section.
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_.ing incidence, /“0“7‘ I = Z. The first-order source function
7 .

S = %aPI = %Pz = %aA.
narrow source'layeé on top of the atmosphere sending a flux
~n the form of scattered light of first order and a flux %Jra
. the atmbsphere. The latter part yields reflection (second
higher) and transmission (first order and higher) by pre-
e same course of events that would have followed illumination

_ow source layer above the atmosphere, I = N. Only the factor

., be added. Hence we have

RZ 2N+2RN 4/‘x(/u)

TZ=%TN=%—-Y(/4)
/&

~..ssions in terms of xgg ) and Y&u ) follow at once from the
~ equations of these functions on page 36.
-ing emergence, /u=C), D= 3a. The situation is entirely

The reciprocal form of the same equations is

ZR=%N+%NR=Z}‘—x(/«)
a a
ZT==2NT—4/A Y(/u.)
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A formal derivation of the top equations may, for instance, be
obtained by writing identities derived in the preceding sections in

the form

. ,
NRI = NPJ = 2AMJ = A (J-S)

gas = XAPI= NI ,
ZRI = ZPJ = AJ

Upon combining these and omitting the factor I, the top equation follows.

Another derivation may be obtained from Table 5, where it was shown

that both for absorption and transmission
20 = %NO (p2 1)
b p-1 p2
Observe further that
in reflection: ZOo = 0, aZOlv= ZPS = 7&1

in transmission: Zoo=o, azo

a .
1 ENOO'

Multiply the equality by aP and add from p=1 to & and, after omission

of the arbitrary incidence vector I, again the same equations result.
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These formulae can be of practical use, both by themselves and
‘in»providing checks on numerical or analytical results. Some further

~products follow easily:

- _4a a a
URZ-ZRU--5+-2-UP.N=—2-0(0
= = 2a
UTZ = ZTU = TN-”QO

NRZ = ZRN = &0 (diverges)

"'NTN 4‘91

NTZ = ZTN

'ZRZ = 00 (diverges)

2 2
272 = & NTN =§?—-ﬁ_,

It may be noted that the divergenée of NRZ is caused only by the
divergence of the first-order term NRlZ (compare Table 7). We can
single this term out and thus derive a formula describing the behaviour

of X(/u ) near /M.= o. After some reduction we find

a a * 4 Jxem) -2
.U?(R - aRl)N = ENRN = E'“L:= ZWH { ~ Z/A + %.ém/u g
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ax(4)
oz

It is thus found that X'( ) = diverges logarithmically

at = o. ' .
Hovaer‘Y'&M) = Q%{é%l attains a finite limit by the equaﬁion

=-a— =a = A Y =!-'- '
ZTN = 5 NIN = fiq )ﬁ;; -{;fl- 3 Y' (0)

9-» The Method of Successive Order Scattering (Simple Iteration)

Suppose we wish to have the numerical value of‘the reflected
radiation for a given incident radiation field I, a given detttor
characteristic D, a given optical thickness, b, and a given albedo
a. The answers may be written in the form

DRI =DPCX%aPl= |

= (0P) (1 + aM + a2u% + adM3 + -——-) (4 a PI)

Ono obvious way of finding this result is to start with the
T-~vector S = 4% a PI, multiply with the T T -matrix aM many times
in succession, take the sum, and multiply this sum with the
T-vector DP. The successive terms éan be identified with
successive order scattering, as explained in section 7.

This method has notrusually been considered practical, except
for very thin atmospheres, because the number of terms to be taken

is quite large, whereas, for instance, in the non-linear integral

cquations for X(/~) and Y(/A) employed by Chandrasekhar a few
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i£erations suffice ﬁo give gobd accuracy. However, per forming
many simple operations and summing many terms is no problem for a
fast computing machine. Some advéntages of the'simple iteration
method ai;e that all operations are linear and that the program_is
quite flexible, permitting any form for I or D to be put in.
The conservative case (a = 0) does not require a special treatment,
nor does the diffuse transmission for/a :/o require a separate
‘formula, as it does in the non-linear method. Finally, general-
izatioh of the method to afbitrary anisotropic scatte£ing patterns
is relatively simple. |

There is only a minor difference between this method and the
iteration method by means of a Neumann'series (see Busbridge's

pbook). In that method the equation

J=8S +aMJd

is solved by the iteration procedure:

Jb) = S.

lim

J = p>& Jﬁ>+])

t

In the present method we do not compute these successive approxi-

mations but the separate increments

51~
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P g, = @np-1 s < I ~ p-1)

and take the sum later. This incidentally, makes it possible
to pﬁt in different values of a .

An important practical modification is that after a certain
term the sum may be replaced by the sum of a geometric series

using the eigenvalues. The integral equation

72J = MJ

has a solution only for a discrete set of numbers 7/'”1< 1
(m = i, 2, 3, ...). the eigenvalues; the solutions are the
correspondiﬂg eigenfunctions J(hd(Tj . A normalization convention
is required to define them completely. There are no degeneracies
hefe. Elaborate theor;es of the properties of eigenfunctions
and of expansions into eigenfunctions exist, both for matrices
M of discrete numbers and for continuous functions. This full
‘ theory does not have to be invoked, for the application to the
present coméuﬁation is quite simple. If any term of the series
for J can be represented with good accuracy as a linear combina-
tion of two eigenfunctions

aP Ip = a? f q

(1)
i gy ]
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then the next term will be

Thio, Tne rnexi =TI - ;
p+i L _p+i _ p+d) (1) (1) (2)
gp*f-p+i=§§~ MI, = a® ;"1‘11‘T Ty A d

B3¢ . L:

The numerical value of the term with the lower elgen,yalue, say

?&?f?jjgéééhaffgfi;?re raéiéiy than the term with the larger eigen

3éig§’?fp.. Eif egally;mzﬁere will be a term beyond which we

ganunegiect wx;p good aces;acy all but the lowest eigen” function
G neglert oL Tl —z -

and pue s

MRS By za 2%

From this point on we may sum in a geometrical series

Froim this 70 --Gn v Ehes "J
50 L
Z afy, = L
- a)

¢)
-Since a $’1_and v -( 1 the convergence is assured. Orly

s_vz\ KO- .

the conservatlve case (a = l) for a semi-infinite atmosphere

LII" PE-Y S SE Izl

( vrz = l) has to be treated as an exception. This is exactly

-
- - T

tre case whlch pas been thoroughly discussed by Hopf and oth=rs

- - =
LSOO C&se L L e e

a long time ago. _If albedo values a > 1 were permitted, a

a - & o—-- .—-‘..‘ - s

-

ll

Ca)
“critical" value a = ( W(J)'l would be reached at which the
"eriticalt v '

radiation 1n the slab is selfsustalned This corresponds to the

. e

rafiagicn o = SiE. N

critical state of a nuclear reactor.

Ccr; oo > e . . -
au.x‘...... oo - ,", [ 0)
We have found no values for }7 in the literature, but
We hz ¢ =RE RS L. ...

R PR
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T N

_ 4n which the ratios

1
1
i

estimated some in an earlier paper (Van de Hulst and Irvine,

. paper at Astrophysical Symposium, Liege, 1962). Some more

accurate values now available are pr'esented in Table 9.
The values marked "numerical® in Table 9 have been obtained

from the iteration process. Those for 77(3) followed from the way

P+‘f/ WJ approached their limit }7 U .

Here W = operator defining integration over T from O to b. The

... walues marked "approximate® in Table 9 came from two sets of

formulae derived from small and large .b. A horizontal line

separates the values derived from these two sets.

For small b:

n" = L] 256~ 1+2¢]

@ 2(3 y E, (he)-E3(8) =2 +<f

N =

. These formulae follow from assuming a simple rectangular source

<z, Zunction or a function which is 1 for O (1‘ < %b and -1 for

4 < T < b and by applying the Milne operator once and taking

.. the integral. The approximation seems quite satisfactory for

> < 0.5.

Por larqge b: L' 2
| moIr :
4 1 (W=, 2,')3 .u)

| 7] " B 3( ¢ +/.;,'o§2

I
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" TABLE 9: Eigenvalues for Isotropic Scattering
P nunerical approx.| numerical approx.
: approx.

0.0l .0276 .0276

0.02 .0484 .0069

0.05 .0984

0.1 .164 .1630 .0338

0.2 .260 .066

0.4 .363 .126

0.5 .44734 .443 .0845

0.8 .555 .231

1.0 .61902 . 610 .306 .195 ¥ _00s .164

2.0 .78301 .779 .449 .345 ¥ .005 .281

4 .90213 .899 .691 .565 ¥ .005 .498

8 .964 .871 .750
10 .97549 .976 .909 .829 ¥ ,002 .816
20 .9929 .972 .939
00 | 1 1 1 1
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o ) _
This formula, which gives, satisfactory approximation for m = 1,

b ;; 2, has been derived by'assuming for J a sine curve

£+ 140

J(t) = sin

whichlﬁas (m = 1) zeros inside the atmosphere and would reach zero
outside the atmosphere at T = -0.70 and T =b + 0.70. The value
0.70 is somewhat ill-defined but not very critical; it can be
estimated either from the theory for a semi-infinite atmosphere

or from numerically computed eigenfunctions. We now combine the

equation 7
1 -
dF(o _ yli-3\ J(®)
AT
derived on page lj)with the equation

Floy = % ddz_m

which is a yell known aﬁproximation valid in any point inside a
thick atmosphere not too close to the surface. These equations are

consistent if we choose for a the critical value > 1 defined by

mrtme

= - L =
I=n= k= s

3 {f#—/.yo)z

This result cannot be expected to be correct, except for very

large values of b. Thgﬁiormula actually used is equivalent for



large b, but fits the data better for relatively small b.

The eigenvalues in Table 9 can be used for an estimate of the
number of iterations required. One;sided illuminatién generally
 generates a first order source function S(tr ) in which the secdnd
eigenfunction Jc%ﬁj is represented with a coefficient of order
unity. Hence 6-figure accuracy can be obtained if the itetation
is stopped (and further terms replaced ﬁy a geomatric series)

when this term has been reduced to 10_6, i.e., at the order

£
_An initially symmetric source distribution gives faster convergence
because.JB%r)is the next competing eigenfunction. Some typical

_estimates are given in Table 10. Thesé data are not sufficiently

conplete for a critical discussion but show the general trend.
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TABLE 10: Number of Iterations Required

‘b one~sided illumination symmetric sources
6/ (-log r?(‘)) empirical r | 6/(-log 7)[’)) empirical r
0.5 7 11 6 5
1 12 17 8 7
2 17 13 10
4 38 24 17
10 : 150 - 75 48

A T T s TR e S e e T LTSI



10, Adding method

By the adding method we shall understand a method for
computing the reflection and transmission by a layer of optical
thickness b = b' + b" making use of the known reflection and
transmission by layers of optical thickness b' and b' .

We shall derive the formulae in two independent ways. In
the first derivation we use the external relations for the two
composing layers and just look how the radiation can get out
of the combtined layer. This derivation holds quite generally,
even for inhomogeneous layers and for anisotropic single
scattering diagrams. The second derivation is more formal and
makes use of partitioned matrices. As this derivation uses
the radiation densities and the albedo explicitly, its
validity is confined to homogeneous layers with isotropic
scattering and constant albedo.

Our main aim in discussing the adding method is to apply

it to the case b' = b", i.e.” in the form of a doubling method.

. : W s
In another extreme we might take either b' or b infinitesimal.

This leads to the method applied by Bellmann, Kalaba and

Prestrud and described by them as invariant erbedding.

- For the first derivation we refer to Fig.2 . In the
prototype diagram I is the incident, R the reflected and T the
transmitted radiation, and J the radiation density (which will
be used only in the second derivation). The R, T, and J,
include all orders of scattering and thus form the exact

solution for the equation of transfer in the single layer. The

— e



Figure 2.

The doubling

method

(a) proto-type, single layer

1\( /ﬂli

(b) double layer

\T

YA

sums n = 1 to o0
R = i:Rn )
3 =zr3!
n
D= ED,
U= iIUn
_ ]
v J = ZLJn
T = iZTn

R



T includes the zero-order term corresponding to direct

- gransmission. The double-layer diagram consists of a simple

succession of these prototype diagrams, namely in the upper
half one right side up and the rest upside down, and in the

jower half all right side up. The radiation intensities up

-and -down at the center of the double layer are called U and D.
- primes refer to the upper layer, double primes to the lower

layer. Note that the indices n in this method do not signify

/

. orders of scattering; the meaning of n -1 is (in Rn, Tn’ J n

and J"n) the number of times a photon has crossed the middle

"2 -boundary going up.

The recursion formulae can be read from Figure 2 and are

for incident radiation from one direction

} )

R, = R D, = T
o ]
Tll_ T Dn Un = R" D,
R4 17 T U, Dn +1° R Un n=1,

. By addition they give

D= {1+ (R'R") + (R'R" )2+ ...] T = (1 - RR")7
u=grYD
R = RJ“" TIRII D

-~ 1=T¥D



-y

" These equations are correct and complete but daceivingly

}imple. Great care has to be exercised in writing them in the

forms of integrals, because the matrix D contains, like T', T''

and T, a singular (diagonal) part besides a diffuse part. Also,

the order of arquments is not irrelevant in the assymetric matrices

D and U. Por further explanation we write therefore the same set

of equations in a form in which they can be used for actual
numerical calculation.
Write positive cosines of angles with the normal
f§r incideyt radiation at tops //lo
£of downward radiation at interface: u, v, W
for upward radiation at in;erfacei z
for emergent radiation at top or bottom: /AL

The calculation may then proceed as shown in Table 1l1l.

Let us now turn to the second more formal derivation. We

- refer to the book of V. N. Faddeeva “Computational methods of

;incdl algebra® and use a conblnatlon of the method of
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. TABLE 1ll:

Matrix form

Computation PrOQram'for deiﬁduxefﬁbdftﬁ'

Punctional form

| q71= R‘IRH

@nﬂ"" C?‘ &n

o0

- 26,

n=/
D=(1+SHT T,

= 7:, + D,[,-/’{

U-R'(T)+ DM/\

R-R'+(Ts 7)) U

4
Q‘l (u,v) =/ R'[“)’-)R"/%V) 2zdz=
0 , |
anﬂ (“»V)=/@1 (K»W)Qn(w,v) 2wdw
o .

S (wv) = hz:'- Ry (4, v)

. | -6/
R(/‘,/‘a) = R//H,/(o) + £ U{/“/o
{ .
"'/7;.', (r:2) U(’-’,/‘QQZJz.
ey e

4

e lppod - ¢ D////'/'O) 4 Mr(/“/“’)

/ Td://[/‘ ;“) 2t /L,fo) 2udu




T

partitioned matrices (p. 102 - 103) with that of improved
convergence of iteration (p. 127 - 131).
We write vectors and matrices for the double layer
without primes, vectors and matrices for the separate layers
with primes and double primes. The central problem (see section
5) is to find
c=(1-ant

when M and a are given. Suppose we know the relations

We now partition the matrices for the composite layer and

introduce a new one, G, as follows

(s 1) (1)
;o)

Obviously G can serve as a first approximation to C. We find

by direct multiplication

G(1 - aM) =1 - H

..where

and hence

(1 - H)C =G
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or ,
- -1
C=(1-H"GC

Inversion of 1 - H in partitioned form gives by standard

. procedures

(1 - a2c'tc"'yt ac'L(1 - a?c"ic'D 7t

a-mt=
ac’L(1l - 20t 't a - a2c" 'yt
and finaliy; ' '

L

(1 - a’c Ic” e (1 - 22c'tc” vy tac' T

(1 - aZc” e’y lac” ¢’ (1 - azc” 1’ c!

)

The method thus followed consists of choosing a trial
solution G which is used to improve the convergence of the
iteration.' For large values of b (thick layers) and albedo 1
or close to 1, the convergence of the iteration procedure by
successive orders of scattering, 1.e. successive multiplication
by aM, is extremely slow. The expectation is that the
jterations involved in the equations just derived, for instance,

(1 - 20T = 1+ 2% T + a*c'teV i Lo+ L
converge more rapidly. We shall later confirm this by looking

at the eigen_values.

We still have to establish the equivalence between the

results of the second derivation (expressed in terms of Z”T’,
Tl noopeM ) and 7" " matrices) and of the first

-+ derivation (expressed in terms of /6/4 matrices). This
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~equivalence is demonstrated by considering that

a geometric

series in which the ratio of successive terms is a product,

say AB, can be written in different ways namely

(1 - AB)"L = 1 + AB +ABAB + ... =

1 + A(1 + BA + BABA + ...)B =1 + A(1 - BA) -1

B

This transformation is trivial if A and B are numbers, but

non-trivial for matrices. Generally A can be a matrix of n rows

and m columns and B one of m rows and n columns;

then AB is a

square matrix of n x n components and BA a square matrix of

m X m components.

s

The equivalence is now established as follows. Let us

measure T/ from the separation layer up in the
/4 -

top layer

: 7
to b’ and 4Gwm in the bottom layer to b” (see Figure 3).

b!
r)
_?o
I
' bll

(Figure 3)

We have derived earler that the matrices occurring in the first

derivation can be decomposed as follows.

) I

R' = P c'$F
rY  (pT ) (T
and R" = pMc"{ P
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~ The matrices L and T recurring in the second derivation have

the functional form

L=T=3%(7"+T"
and can also be written as matrix products:

L = L7"P I = y97'p”

‘We thus find that the general term of the iterative solution

contains continued products as follows

jterative matrix in derivation.d
r W }
ceiee kPP CaxF p'c’ a4 P"P' C'a k.
L____J L___J R
L

—

jterative matrix in derivation 2

The remaining proof consists of'simple substitutions. We
generally have
R=PC S
T=To+QCS
where To=TJf§¥ and, considering the convention of countlno
T'and T" (Figure.ZZ,the partitioned forms are
q' A To P’
_ P = Q =

LY SR Q

The partitiqﬁgﬁgfprm of C was found in derivation 2. Performing

-67~
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the"somewhat tedious multiplications we find indeed the same
result as when writing out the formulae of derivation 1, namely
"R=R'"+T'(R'" + ...) T' =

= Q'C'akQ’ + (Tg+ Q'C'akd')(p''c" a¥B" +...) (Tg + P'C'akd’)
and |
e p Tt (L4 T s

= (1) +Q"C"a ¥ B (L +...)(Tg +P'C' a % Q')
‘vh.ivch'follow from the first derivation. The dots stand for
higher powers in R" R' or R'R" ., “

A sample computation was xgade starting with R(/u,/u,) and
Tairrl /“,/Uo) for b = 0.25 obtained by t}'xe simple iteration method
and proceeding to find these functions for b = 0.5, 1, 2, 4, 8
and 16, by the doubling method. Only/g'-integrations are involved.
" In spite of the fact that a fairly crude integration scheme was
used, three to four-figure accuracy was obtainéd.

o It is interesting to examinethe eigernvalues X (b,a) found
‘dn this computation. Forv given b and a the ratio of successive

: #erms in the doubling method approaches a definite limit:

= g&« Qn.}.//{l‘!) H’Q
o(//,a) ”.-*m~ @ 74,4, 4, V)




In all sample computations the ratio came to within one per cent
of this limit already at the iteration from Q, to Q3. This shows
that the next highest eigenvalue is quite low and that without
loss of accuracy the sum might have been replaced by a geometric
geries beyond the third or fourth terms. This is entirely different
from what occurs in the simple iterxation procedure. Also, the eigen-
values X are much lower anyway than the eigenvalues )? of the simple
iteration procedure. | |

Por thick layers the radiaﬁion field at the central interface
must be almost isotropié. Hence we should expect the eigenvalue

o to approach the scuare of
Iz (b/2) = URU
because at both reflections R' and R" this is the fraction of the

flux thrown back across the interface. Table 12 shows that this

expectation is well fulfillad.
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TABLE 12: Eigenvalues in the Doubling Method
a=0.8 a=0.95 a 1.00

b b e (urU) 2 & . (URU) 2
0.25 0.5 .0267 .0176 .0410 L0472 .0324
0.5 1 .0520 .0422 .0892 .1066 .087
1 2 .0870 .0785 172 .2172 .200
2 4 .114 .272 .3838
4 8 .122 .343 .4761
8 16 .122 .361 .743
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Jl, Some Mumerical Results

Table 13 (pages 73 to 76) presents some sample pages of a
numerical table which has been designed to give maximum convenience
to.the "user®. The user may be a physicist, éstronomer, éeo-
physicist, or other scientist who wishes to make rapid reference
to a particular number or who wishes to employ such a number for
compariéon with a more complicated problem he wishes to study.

The headings are in physical rather than mathematical tems, but
the mathematical definitions of the given numbers are:
for reflection (out at top) DRI (n =1, 2, 3)
DRI (8 values of a)
for transmission (out at botéom) pT,I (n =1, 2, 3, 4)
| DTT (8 values of a)

There are eight choices of incident radiation field I,
corresponding to Bix separaté angles of incidence and two
distributed fields, N and U. Similarly there aré nine choices
of the "de;ector" D of the emerging radiation correspondiné'to the
same eight choices and the graziné emergence, vector Z,’/L = 0.
The direct transmission has a singularity if D and I refer toithéAj
same angle. This has been indicated by the word PEAK in the

appropriate boxes. The DTI values in the columns under the word
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PEAK refer to the diffuse transmission only. The DTI values in
all other columns include the direct radiation DT,I which has no
singularity there. The 72 reflection columns and, similarly, the
72 transmission columns are partly redundant. Because of the
reciprocity between I and D twenty-eight columns occur twice ahd
gixteen columns, namely the eight symmetric'combinationa and the
eight combinations with D = Z, occur once. o

The computations were programmed by M. K. Grossman and carried
out at the IBM 7090 of the Institute for Space Studies, New York.
The simple jteration method (successive scattering) was used.
Abundant internal checks on the accuracy are provided by the
required equality of the twenty—-eight reciprpcal products. Generally,
the present integratioq,which was carried out with steps 0.0l in T,
gave an accuracy of about four units in the fifth decimal. Only
the functions ipvolving the directions /u,‘= 0.1 6r /Al= 0.1
gave differencesup to twenty-six units in the fifth decimal.
This may be remedied, if desired, by a finer integration mesh.
Additional internal checks are available between the products with
vector Z and those with vector R (section 8).

The functions X(/l) and Y(/l) and their moments of order
-1, 0 and 1 are implicitly contéined in these tables in various

combinations (page 36-38). The checks against other published
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1SOTROPIC SCATTERING

INTENSITIES OUT AT TOP

VECTOR

B= 1.0

FIRST DROER
SECOND QROER
THIRD ORDER

SUMS A=
Aa
A=
A=

A=
A=
A=
A=

8= 1.0

0.20
0.40
0.60
0.80

0.%0
0.95
0.99
1.00

FIRST ORDER
SECOND ORDER
THIRD ORDER

SUMS A=
A=
A=
A=

A=
A=
A=
A=

Bga 1.0

0.20
0.40
o. 60
0.80

0.90
0.95
Oqu
1.00

F1RST ORDER
SECOND GRDER
THIKD URDER

SUMS A=
Az
A=
A=

A=
As
A=
Az

B= 1.0

0.20
0.40
0.60
0.80

0.90
0.95
0.99
1.00

FIRST ORDER
SECOND OROER
THIRD ORDER

SUMS A=
A=
A=
A=

A=
A=
A=
A=

0020
0.40
0.60
D.89

0.90
0.85
0. 99
1.00

ny=0
g

NARROW SOUR

G0.00000
0.17135
0.06614

20.00745
40.03279
60.08283
80.17015

90.23522
95427543
99.31224
00.32218

MUNGQUGHT =

2.50000
0.29923
0.09133

0.51280
1.05518
1.63568
2.26913

2.61418
2.790632
2.94770
2498644

MUNOUGHT =

0.83333
0.18265
0.07690

0.17466
0.36881
0.59034
0.85386

1.00998
1.09680
1.17157
1.13111!

MUNOUGHT =

0.50000
0.13525
0.06369

0.10598
0.22639
0.36952
0.54671

0.65598
0.71819
0.77262

0.78697

Mmy=20.1

CE LAYER

0.59997
0.18265
0.cg8lse

0.12803
0.27551
0.45217
0.67279

0.80921
0.88591
0.95486
0.97277

001

1.25004
0.29583
0.10912

0.26297
C.556a7
0.39156
1.28628

1.51671
1.64343
1.75166
1.77980

0.3

0.62500
0.21158
0.09612

0.13433
0.2917%
0.48212
0.72414

0.8755!:
0.94220
1.03826
1.05834

0.5

O.41667
0.16188
0.08041

0.09053
G.19922
0.33469
0.51337

D.52377
0.59609
0.75585
0.717173

FINITE LAYER =~ TA

MU=0.3

AT TOP

0436529
0.15384
0.08018

0.07994
0.17741
1 0.30116
0.46802

0.57777
0.642544
0.7C021
0.71562

0.62500
0.21173
0.09613

0.13433
0.29174
0.48220
0.7243C

0.87573
0.962465
1.03¢&55
1.05865

0.416l%
0.18079
0.09380

0.09131
0.20317
0.34579
0.533865

J3.56568
2.74054
0.50743
0.82527

0.31099
Q0.14906
0.08174

0.05390
0.15:C8%
0.25763
0.42401

0.52944
0.56228
0.64085
0.66401

B8LE 13

MU=0.5

0.27050
00127‘)1
C.0%1022

0.059%3
O.13447
0.23174
0.35682

0.45777
0.51234
0.560G0
0.57399

D.41667
0.1¢6201
0.08046

0.09054
0.19924
0.33476
0.51351

0.62897
0.69631
0.75610
0.77200

0.31099
0.143C7
0.08174

0.068%0
0.155C5
0.26703
0.42408

0.52945
0.59230
0.464387
0.66403

0.24542
0.12719
0.07259

0.05483
0.124483
0.21756
0.34957

0.43968
0.49456
054202
0.55665

73

NU=0.7

0.21553
0.10728
0.C6075

0.04755
0. 103849
0.13545
0.30G116

0.37794
0.42403
0.45569
0.476387

0.31256
C.13085
0.06802

0.06835
0.15160
C.25718
0.39938

0.49284
0.54789
0.59706
c.61018

0.24786
0.12503
C.07051

0.05521
0.12508
0.<1249
0.34785

Q. 43566
0.48985
0.53311
0.55104

0.20158
0.10661
0.06321

0.04523
0.1C334
D.18149
0.293171

0.37121
0.41504
0.46C55
0.47198

FOR EXPLANATION SEE PAGE T1-72

MU=0.9 MU=1.0 AVERAGE FLUX

0.17924
0.09216
0.05301

0.04002
0.09091
0.15858
0.25506

0.32117
0.36099
0.3737046
0.‘:0675

0.25000
0.103561
0.05855

0.05491
0.122¢3
0.20901
0.32716

0.40565
0.45216
0.49385
0.50500

0.26589
0.13712
0.06142

0.04602
0.10467
0.18237
0.23417

0.37052
0.541650
0.,45814%
0.46933

0.17062
0.03406
0.05537

0.05839
0.03768
0.i£506
0.252013

0.31932
0.363C8
G.39714
Ceul712

0.16534
0.08601
0.04975

0.03696
0.08409
0.14704
0.23684

0.29859
0.33583
0.36958
0.37866

0.22727
0.10135
0.05468

0.05000

0.11170

0.19115
0.30009

0.37276
0.41591
0.45464
0.46500

0.18978
0.099587
0.05760

0.04248
0.09675
0.16933
0.27297

0.34423

0.38721
0.42617
0.43664

0.15837
0.06803
0.05203

0.03567
0,08183
0.14442
0.25510

0.295314
0.335636
0.37113
0.38049

0.34270
0.13227
0.06877

0.07445
0.156398
0.276l1
0.42538

0.52273
0.5794d5
0.63080
0.64437

0.59997
0.18206
0.08192

0.12803
0.27592
D.25219
0.67283

0.80928
0.86699
0.95496
0.97287

0.36529
0.15379
0.08017%

0.07994
C.17740
0.30114
0.401798

0.57772
0.64233
0.70014%
0.71555

0.27050
0.12738
0.07021

0.05983
0.13447
Gl.23173
J.366178

0.45713
0.51199
0.550:4
0.57393

\

0.24458
0.11350
0.06284

0.0540%
0.,12133
0.2€867
0.33028

0.41198
0.%6072
0.50460
0.51635

0,28016
0.14475
0.07181

0.00247
0.18117
0.36333
0.46515

0.56917
0.,62979
0.568359
0.69789

0.27821
0.13290
0.07307

0.06162
0a.13807
0.23927
0.37916

0.67342
0.529%6
0.55020
0.59387

£.21947
0.113566
0.06500

0.04903
O.1114%
0.16457
c.31270

0.39386
Daka239
0,45650
0.4G836
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1SOTROPIC SCATTERING FINETE LAYER TABLE 13

INTENSITIES OUT AT TOP FOR EXPLANATION SEE PAGE Ti-7Z
. HU=0  MU=0.] MuU=0.3 MU=0.5 MU=20.7 MNU=0.9 MU=1.0 AVERAGE  FLUX
VECTOR z N 1]
B= 1.0 MUNOUGHT = 0.7
FIRST ORDER 0.35714 0.31250 0.24786 0.20158 0.16832 0.14392 0.13409 0.21553 0.18048
SECOND ORDER 0.10777 0.13074 0.12502 0.10861 0.09361 0.08152 0.07644 0.1072% 0.06718
THIRD OROER 0.05363 0.06797 0.07050 0.06321 0.05531 0.04859 0.04571 0.06074 0.05666
SUMS A= 0.20 0.07622 0.06834 0.05521 0.04523 0.03791 0.03249 0.03029 0.064795 0.04050
A= 0.40 0.16455 0.15158 0.12507 0.10334 0.08698 0,07473 0.06974 0.10848 0.09252
Az 0,60 0.27082 0.25713 0.21749 0.18149 0.15351 0.13227 0.12357 0.18844 0.14250
Az 0.80 0.40617 0.39926 0.34784 0,29371 0.24989 0.21605 0.20210 0.30113 0.26305
Az 0.90 0.49149 0.49268 0.43664 0.37121 0.31689 0.27451 0.25696 0.37791 0.33251
Az D0.95 0.54048 0.54769 0.48593 0.418C4 0.35751 0.31003 0.26032 0.42399 0.37450
A= 0.99 0.58406 0.59684 0.53809 0.46054 0.3G446 0.34237 0.32070 0.46564 0.41262
. A= 1.00 0.59555 0.60995 0.55102 0.47198 0.40441 0.35109 0.32889 0.47682 0.42287
8= 1.0 MUNOUGHT = 0.9
FIRST ORDER 0.27778 0.25000 0.20589 0.17052 0.14392 0.12384 0.11564 0,17924 0.15293
SECOND ORDER 0.08962 0.10952 0.107T12 0.03406 0.08152 C.07123 0.06687 0.09214 0.03425
THIRD ORDER 0.04607 005351 0.06141 0.05537 0.04859 0.04276 0.04025 0.05301 0.04967
SUMS A= 0.20 0.05956 0.05491 0.04602 0.03839 0.03249 0.02801 0.02617 0.04002 0.03441L
A= 0.40 0.12929 0.12241 0.10467 G.08793 0.07473 0.06455 0.06037 0.09091 0.07385
A= 0,60 0.21427 0.20897 0.1B287 0.15506 C.13227 0.11455 0.10721 0.15867 0.13899
A= 0.80 0.32424 0432706 0.29416 0.25202 0.21605 0.18764 0.17581 0.25504 0.22593
Az 0.90 0.39451 0.40551 0.37050 0.31931 0.27451 0.23881 0.22387 0.32113 0.28629
A= 0.95 0.43534 0.45199 0.41648 0.36008 0.310C3 0.26994 0.25314 0.36095 0.32287
A= 0.99 0.47152 0.49366 0.45312 0.39713 0.34237 0,29831 0.27981 £.39701 0.35611
A= 1.00 0.48113 0.50480 0.46932 0.40711 0.35108 0.30596 0.28701 0.40670 0.36507
B= 1.0  MUNOUGHT = 1.0 '
FIRST ORDER 0.25000 0.22727 0.18978 0.15837 0.13409 0.11564 0.10808 0.16534 0.14202
SECOND ORDER 0.08267 0.10127 0.09936 0.08303 0.uUlbé4 0.06687 0.06281 0.,08599 0.,07888
THIRD ORDER 0.06299 0.05464 0.05759 0.05203 0.04571 0.04025 0.03789 0.04974 0.04668
SUMS A= 0,20 0.05370 0.05000 0.04247 0.03567 0,03029 0.02617 0.02447 0.03596 0.03198
A= 0.40 0.11632 0.11168 0.09675 0,08183 0.06974 0.06037 0.09650 0.08409 0.07338
Az 0.60 0.15411 0.19111 0.16933 C.14442 0.12357 0.10721 0.10042 0.14703 0.12351
A= 0.80 0.29473 0.30000 0.27296 0.23510 0.22210 0.17581 0.16482 0.23682 0.2108+
A= 0.90 0.35935 0.37263 0.34422 0.29813 0.25696 0.,22387 0.20999 0.29856 0.26740
A= 0.95 = 0439700 0.41575 0.38720 0.33636 0.29031 0.25314 0.23751 0.33579 0.30171
A= 0.99 0.43042 0.45447 0.42615 0,37112 0.32070 0.27981 0.26260 ©.36954 0.33291
A= 1.00 0.43931 0.46482 0.43662 0.38049 0.32889 0.28701 0.26937 0.37862 0.34131
8= 1.0 LAMAERT SURFACE ON TOP
FIRST ORDER 0.50000 0.38016 0.27821 0.21947 0.18048 0,15293 0.14202 0.24458 0.19673
SECOND ORDER 0412229 0.14466 0.13291 0.113&> 0.09719 0.08426 0.07839 0.11338 0.10162
THIRD ORDER. 0.05694 0.07176 0.07307 0.06500 0.05666 0.06967 0.04669 0.06284 0,05823
SUMS Ax 0.20 0.10540 0.08247 0.06162 0.04903 0,04050 0.03441 0.03198 0.05404 0.04394
A= 0.40 0.22427 0.18115 0.13867 0.11145 0.09252 0.07635 0.07338 0.12133 0.05986
‘A= 0.60 0.36266 030378 0.23927 §.15457 0.16251 0.13899 0.12951 0.20886 0.17432
A= 0.80 0.53210 0.46505 0.37916 0.31271 0.26306 0.22594 0.21085 0.33026 0.25017
A= 0.90 0.63538 0.56902 0.47342 0.39367 0.33253 0.28630 0.26742 0.41196 0.35273
‘A= 0.95 0.69383 0.62962 0.52967 0,44240 0.37452 0.32238 0.30172 0.486069 0.39642
A= 0.99 0.74476 0.63340 0.58031 0.48552 0.41264 0.35613 0.33292 0.50456 0.43533

A= 1400 0.75816 0.63769 0.59388 0.49838 0,42290 0.36509 0.34133 0,51632 04440661
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JSOTROPIC SCATTERING
INTENSITIES OUT AT BOYTOM

MU=0 MU=0.l
VECTOR z
B= 1.0 NAHRROW SOURCE LAYER
IERD ORDER O. 0.00023
FIRST ORDER 0.05485 0.06666
SECOND CRDER 0.05183 0.06591
THIRD ORDER 0.03917 0.05024
SUMS A= 0.20 0.01341 0.01646
A= 0.40 0.03366 0.04184
A= 0.60 0.06570 0.08208
A= 0.80 0.11966 0.15044
a= 0.90 0.156133 0.20347
A= 0.95 0.18794 0.23740
A= 0.97 0.21290 0.26926
A= 1.00 0.21974 0.27800
8= 100 HUNDUGHT = 0-‘
2ERO ORDER 0. Peak
FIRST ORDER 0.00011 0.DQL13

0.03333 0.04115
0.03297 0.04203

SECOND URDER
THIRD ORDER

SUMS A= 0.20 ‘0.00167 0.00227

A= 0,40 0.00837 0.0108%
Az 0.60 0.02463 0.03157
A= 0.80 0.06020 0.07689
A= 0.90 0.09160 0.11697
A= 0.95 0.11281 0.14408
A= 0,99 0.13334 0.17033
A= 1.00 0.13906 0.17764
b= 1.0 MUNOUGHT = D.3
2ERD ORDER Oe 0.
FIRST ORDER 0.02973 0.04454
SECOND ORDER 0.05174 0.06630
THIRD ORDER 0.064273 0.05490
SUMS A=z 0,20 0.00841 0.01207
A= 0,40 0.02395 0.03328
A= 0.60 0.05210 0.07065
A= 0,80 0.10434 0.13903
A= 0.90 0.14683 0.19424
A= 0.95 0.17458 0.23020
A= 0.99 0.20093 0.26430
A= 1.00 0.20819 0.27369
8= 1.0 KUNOUGHT = 0.5
IERD ORDER 0. 0.
FIRST ORDER 0.06767 0.08456
SECOND QRDER 0.05948 0.07616
THIRD ORDER 0.04339 0,05575
SUMS A= 0.20 0.01631 0.02047
Ax 0.40 0.04037 0.05087
A=z 0.60 0.07751 0.09807
A= 0.80 0.13874 0.17619
"A= 0.90 0.18533 0.,23577
Ax 0.95 0.21487 0.2735¢%
A= 0.99 0.24246 0.30893
A= 1.00 0.25000 0.31u859

FINITE LAYER

MU=0.3

AT TOP
0.05946
0.10349
0.08547
0.06031

0.08413
0.11975
0.17368
0.26085

0.32632
0.36756
0.40594
0.41640

0.

0.04454
0.06635
0.05494

0.01207
0.03329
0.07072
0.13910

0.19435
0.23033
0.26445
0.27385

Peak
0.07999%
0.09218
0.06750

0.02413

0.05026
0.11672
0.21050

0.28215%
0.321764
0.37016
0.33179

0.

0.12458
0.09611
0.06592

0.,02937
0.070930
0.13254
0.23034

0.30287
0.34829
0.39040
0.40186

TABLE 13

HU=20.5

0.13534
0.11897
0.08679
0.05830

G.16314
g.20183
0.25839
0.34686

0.41186
0.45238
0.43%86
0.50004

0.

0.08456
0.07622
0.05519

0.02048
0.05088
0.09810
0.17627

0.23589
0.27373
0.39910
0.31876

0.

D.12458
0.09612
0.06592

0.02937
0.07CS0
0.13254
0.23034

0.30288
0.34830
0.35041
0.40188

Peak
0.13534
0.09549
0.06306

0.03146
0.07483
0.13758
0.23475

0.30563
0.34967
0.39030
0.40133
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MU=0.7

0.17118
0.11814
0.58097
0.05300

0.19853
0.23594
0.23968
0.37234

0.43238
0.46660
0.50391
0.51321

0.

0.09984
0.07539
0.05200

0.02346
0.05649
G.10540
0.18294

0.24049
0.27655
0.310C0
0.31911

o.

0.12749
0.09067
0.06022

0.02968
0.07068
0.13017
0.22259

0.29014
0.33215
0.37095
0.38148

0.

0.13039
0.06503
0.C5701

0.03012
0.07112
0.12973
0.21939

0.28424
0.32435
0.36128
0.3712%

MU=0.9 MU=1.0 AVERAGE

0.18288
0.11176
0.07387
C.04762

0.20863
G.24348
0.29306
0.36860

0.42308
G.45674
0.48770
0.49610

0.

0.10286
0.07108
0.04741

0.02385
0.05660
0.10392
0.17727

0.23086
0.26420
0.29499
0.30336

0.
o.l

0.08322
0.05425

0.02829
0.066389
0.12222
0.20714

0.26872
0.30685
D.34199
0.35152

0.

0.12116
€.07973
0.051C6

0.02789
0.06559
0.1i909
0.20037

0.25E86
0.29495
0.12813
0.33712

FOR EXPLANATION SEE PAGE 7I1-7Z

FLUX
N U

Q0.14850
0.11225
0.07947
0.05283

0.18394
0.13793
0.07043
0.06516

0.10969
0.10366
0.07833
0.05366

017461
0.21065
0.26292
G.3e410

0.20876
0.24225
0.28972
0.361738

0.13405
0.16832
0.21898
0.29914

0.35851
0,39567
0.43011
0.43949

0.40345
0.44036
0.47445
0.48371

0.41363
0.46563
0.47505
0.48302

0.00005
0.08755
0.07159
0.05103

0.00023
0.06666
0.06594
0.05027

0.

0.10218
0.06856
0.04519

0.02089
0.05095
0.09649
0.17029

0.02359
0.35573
0.10179
0.17262

0.01666
0.04185
0.03211
0.15049

0.22585
0.26090
0.29355
0.30246

0.22¢11
0.25606
0.28552
J.29351

0.20355
0.23749
0.26937
0.27811

0. 0.059%46 J.03567
0.1186%4 0.1034+ ~,11850
0.07951 0,085 - .08827
0.05149 0.060-, ..05981

2230

0.08413
0.11975%
0.173686
0.26084

3.06345
J.10235
0.15654%
0.24952

'0.02738
0.06459
0.11770
0.19889

0.31588
0.35732
0.39569
0.40612

0.25758
0.29388
0432729
0.33635

0.32630
0.36754
0.40591
0.416338

0.13534
0.12555
0.08696
0.05702

0. 0.135%34
0.11627 0.11897
0.07583 0.086178
0.048386 0.05829

0.02673
0.06277
0.113380
0.19112

0.16%45
0.20436
0.251863
0.35042

O.1l63146
0.20183
0.25338
0.34584

0.41483
0.65478
0.49161
0.50161

0.24667
0.28091
0.31237
0.32089

0.41184
0.45235
0.48982
0.50001




ISOTROPIC SCATTERING FINITE LAYER TABLE 13

INTENSITIES OUT AT B8OTTOM FOR EXPLANATION SEE PAGE 71-T2
- MU0  HU20.1 MU=0.3 My=0.5 MU=0.7 MU=0.9 MU=1.0 AVERAGE  FLUX
VECTOR 4 N U
B= 1.0 MUNOUGHT = 0.7
ZERO ORDER 0. 0. 0. 0. Peak o, 0. 0.17118 0.23965
FIRST ORDER 0.08559 0.09984 0.12749 0.13039 0.12227 0.11193 0.10686 0.11814 0.11982
SECOND ORDER 0.05907 0.07533 0.09067 0.08503 0.08024 0.07221 0.06852 0.08095 0.07987
THIRD ORDER 0.04048 0.05196 0.06021 0.05701 0.05128 0.04578 0.04332 0.05299 0.05147
SUMS A= 0.20 0.01985 0.02346 0.02968 0.063012 0.02813 0.02569 0.02451 0.19853 0.26728
A= 0.40 0.04719 0.05648 0.07068 0.07112 0.06613 0.06023 0.05740 0.23593 0.30476
A= 0.60 0.08690 0.10536 0.13017 0.12973 0.12001 0.10398 0.10375 0.28967 0.35816
A= 0.80 0.14893 0.18286 0.22258 0.21939 0.20177 0.18260 0.17361 0.37233 0.43953
A= 0.90 0.19456 0.24038 0.29013 0.28424 0.26057 0.23536 0.22362 0.43236 0.49833
A= 0.95 0.22305 0.27641 0,33214 0.32435 0,29683 0.26784 0.25440 0.46957 0.53464
A= 0.99 0.24942 0.30984 0.37093 0.36127 0.33016 0.29766 0.26264 0.50337 0.56804
A= 1.00 0.25659 0.31894 0438147 0.37128 0.33919 0.30574 0.29028 0.51318 0.57709
Bs 1.0 KUNDUGHT = 0.9
ZERO ORDER 0. 0« 0. 0. o. Peak o. 0.18288 0.32919
; FIRST ORDER 0.09144 0.10286 0.12230 0.12116 0.11193 0.10160 0.09672 0.11176 0.11081
5 SECOND ORDER 0.05586 0.07102 0.08321 0.07573 0.07221 0.064¥5 0.06136 0.073685 0.07220
i THIRD ORDER 0.03693 0.04737 0.05425 0.05105 0.04578 0.04080 0.03858 0.04761 0.04505
SUMS A= 0.20 0.02086 0.02385 0.02829 0.02789 0.02569 0.02328 0.02215 0.20863 0.35466
A= 0,40 0.04870 0.05659 0.06688 0.06559 0.06023 0.05448 0.05179 0.24348 0.38901
A= 0.60 0.08792 0.10389 0.12221 0.11509 0.10898 0.09836 0.09343 0,29306 0.43762
A= 0,80 0.14743 0.17719 0.20713 0.20037 0.18260 0.16438 0.15601 0.36858 0.51127
A= 0.90 0.19037 0.23076 0.26870 0.25886 0.23536 0.21158 0.20069 0.42305 0.56419
A= 0.95 0.21694 0.26407 0.30554 0.29495 0.26784 0.24050 0.22816 0.45671 0.59681
A= 0,99 0.24140 0.29485 0.34197 0.32812 0.29766 0.26723 0.25335 0.48767 0.62678
A= 1,00 0.24803 0.30321 0435150 0.33711 0.30574 0.27443 0.26017 0.49606 0.63490
B= 1.0 MUNDUGHT = 1.0
ZERD ORDER 0. 0. 0. 0. 0. 0. Peak 0.18394 0.36788
FIRST ORDER 0.09197 0.10218 0.11864 0.11627 0.10686 0.09672 0.09197 0.10793 0.10617
SECOND ORDER 0.05397 0.06851 0.07950 0.07583 0.06852 0.06136 0.05812 0.07042 0.06662
THIRD ORDER 0.03521 0.04516 0.05149 0.04836 0.04332 0.03858 0.03647 0.04515 0.04361
SUKS A= 0.20 0.02088 0.02359 0.02738 0.02673 0.026451 0.02215 0.02105 0.20876 0.39226
A= 0,40 0.04845 0.05571 0.C6459 0.06277 0.05740 0.05179 0.04920 0.24224 0.42505
A= 0.50 0.08691 0.10176 0.11770 0.11380 0.10375 0.09343 0.08868 0.28971 C.67137
A= 0.80 0.14471 0.17255 0.19888 0.19112 0.17361 0.15601 0.14796 0.36176 0.54140
A= 0.90 0.18612 0.22401 0.25757 0.24667 0.22362 0.20069 0.19026 0.41361 0.59162
As 0.95 0.21166 0.2559%4 0.29387 0.23G91 0.25440 0.22816 0.21624 0.44561 0.£2256
, A= 0.99 0.23513 0.238538 0.32728 0.31237 0.28263 0.25335 0.24007 0.47501 0.65096
i A= 1.00 0.24149 0.29337 0.33634 0.32089 0.29028 0.26017 0.24651 0.48298 0.65865
. 8= 1.0 LAKBERT SURFACE ON TOP ,
s ZERQ ORDER 0. 0.00005 0.03567 0.135364 0.23965 0.32919 0.36788 0.14850 0.21938
FIRST ORDER 0.07425 0.08755 0.11850 0.12555 0.11982 0.11081 0.10617 0.11225 0.11624
SECOND ORDER 0.05612 0.07154 0.05327 0.08697 0.07988 0.07221 0.05863 0.07946 C.07913
THIRD ORDER 0.03973 0.05100 0.05981 0.05702 0.05148 0.04606 0.04361 0.05282 0.05155
SUMS A= 0,20 0.01746 0.02089 0.06345 0.16445 0.26728 0,35667 0.39226 0.17461 0.24627
A= 0.40 0.04213 0.05094 0.10235 0.20436 0.30477 0.38901 0.42505 0.21065 0.28296
A= 0,60 0.07888 0.09646 0.15954 0.26134 0.35816 0.43762 0.47138 0.26292 0.33555
A= 0.80 0.13763 0.17022 0.24952 0.35043 0.43959 0.51128 0.54140 0.34409 0.41625
A= 0.90 0.18154 0.22574 0.31587 0.41484 0.49834 0.56420 0.59163 0.40343 0.47475
A= 0.95 0.20916 0.25078 0.35732 0.45479 0.534465 0.59682 0.462257 0.44034 0.51098
A= 0.99 0.23484 0.29341 0.39568 0.49162 0.56305 0.62679 0.65098 0.47442 0.546435

A= 1.00 0.24184 0.30231 0.40612 0.50162 0.57710 0.63491 0.65867 0.48308 0.55341
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data by Chandrasekhar et 2l., by Mayeré, and by Bellman et al.,
(sce references) were good to at least four decimals. The

- functions F (s, b), Gpy(d) and G;m(b), with n, m = 1 or 2, are

- implicitly contained in the lines marked "first order™ (Table 8,

page 44).

Finally, in Table 14 we present an excerpt of what happens
to the flux (taken as 1000 units) vhen it strikes the atmosphere
with different angular distributicns. The fluxes eﬁerging at top
and bottom may be read from tabulations as justrpresented. The
remainder, written on the middle lines is what is absorbed inside

the atmosphere (Table 5, page 38).
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TABLE 14:

Table of Fluxes (Incident flux = 1000)

b = 0.5 b=1.0
GRAZ THIN LAMB  PERP GRAZ THIN LAMB PERP
z N U Ao=1 pA N v Ao=1
a=0,2
105 48 37 25 reflected 105 54 44 32
859 590 489 345 absorbed 878 771 710 576
36 362 474 630 trantmitted 17 175 246 392
a=0.6
353 176 137 93 reflected 363 209 174 130
509 364 303 214 absorbed 558 528 490 399
138 460 560 693 transmitted 79 263 336 471
‘ a = 0.95
638 344 271 185 reflected 694 461 396 302
78 67 48 34 absorbed 97 99 93 75
284 599 681 781 transmitted | 209 440 511 623
a=1
687 375 296 203 reflected 758 516 447 341
o 0 0 0 absorbad 0 0o 0 0o
313 625 704 797 transmitted | 242 484 553 659
any a
directly
) 327 443 607 transmitted ] 148 219 368
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